Source code for jaxdem.integrators.direct_euler

# SPDX-License-Identifier: BSD-3-Clause
# Part of the JaxDEM project – https://github.com/cdelv/JaxDEM
"""Direct (forward) Euler integrator."""

from __future__ import annotations

import jax

from dataclasses import dataclass, replace
from functools import partial
from typing import TYPE_CHECKING, Tuple

from . import Integrator

if TYPE_CHECKING:  # pragma: no cover
    from ..state import State
    from ..system import System


[docs] @Integrator.register("euler") @jax.tree_util.register_dataclass @dataclass(slots=True, frozen=True) class DirectEuler(Integrator): """ Implements the explicit (forward) Euler integration method. """
[docs] @staticmethod @partial(jax.jit, donate_argnames=("state", "system")) def step(state: "State", system: "System") -> Tuple["State", "System"]: """ Advances the simulation state by one time step using the Direct Euler method. The update equations are: .. math:: & v(t + \\Delta t) &= v(t) + \\Delta t a(t) \\\\ & r(t + \\Delta t) &= r(t) + \\Delta t v(t + \\Delta t) where: - :math:`r` is the particle position (:attr:`jaxdem.State.pos`) - :math:`v` is the particle velocity (:attr:`jaxdem.State.vel`) - :math:`a` is the particle acceleration (:attr:`jaxdem.State.accel`) - :math:`\\Delta t` is the time step (:attr:`jaxdem.System.dt`) Parameters ---------- state : State Current state of the simulation. system : System Simulation system configuration. Returns ------- Tuple[State, System] The updated state and system after one time step. """ state, system = system.domain.shift(state, system) state, system = system.collider.compute_force(state, system) state = replace( state, vel=state.vel + system.dt * state.accel * (1 - state.fixed)[..., None], ) state = replace( state, pos=state.pos + system.dt * state.vel * (1 - state.fixed)[..., None], ) system = replace( system, time=system.time + system.dt, step_count=system.step_count + 1 ) return state, system
[docs] @staticmethod @partial(jax.jit, donate_argnames=("state", "system")) def initialize(state: "State", system: "System") -> Tuple["State", "System"]: """ The Direct Euler integrator does not require a specific initialization step. Parameters ---------- state : State Current state of the simulation. system : System Simulation system configuration. Returns ------- Tuple[State, System] The original `State` and `System` objects. """ return state, system
__all__ = ["DirectEuler"]