jaxdem.rl.environments.single_navigator#
Environment where a single agent navigates towards a target.
Classes
|
Single-agent navigation environment toward a fixed target. |
- class jaxdem.rl.environments.single_navigator.SingleNavigator(state: State, system: System, env_params: Dict[str, Any])[source]#
Bases:
EnvironmentSingle-agent navigation environment toward a fixed target.
- classmethod Create(dim: int = 2, min_box_size: float = 1.0, max_box_size: float = 1.0, max_steps: int = 2000, final_reward: float = 2.0, shaping_factor: float = 0.0, prev_shaping_factor: float = 0.0, goal_threshold: float = 0.6666666666666666) → SingleNavigator[source][source]#
Custom factory method for this environment.
- static reset(env: Environment, key: Array | ndarray | bool | number | bool | int | float | complex | TypedNdArray) → Environment[source][source]#
Initialize the environment with a randomly placed particle and velocity.
- Parameters:
env (Environment) – Current environment instance.
key (jax.random.PRNGKey) – JAX random number generator key.
- Returns:
Freshly initialized environment.
- Return type:
- static step(env: Environment, action: Array) → Environment[source][source]#
Advance one step. Actions are forces; simple drag is applied.
- Parameters:
env (Environment) – The current environment.
action (jax.Array) – The vector of actions each agent in the environment should take.
- Returns:
The updated environment state.
- Return type:
- static observation(env: Environment) → Array[source][source]#
Build per-agent observations.
Contents per agent#
Wrapped displacement to objective
Δx(shape(2,)).Velocity
v(shape(2,)).
- returns:
Array of shape
(N, 2 * dim)scaled by the maximum box size for normalization.- rtype:
jax.Array
- static reward(env: Environment) → Array[source][source]#
Returns a vector of per-agent rewards.
Equation
Let \(\delta_i=\operatorname{displacement}(\mathbf{x}_i,\mathbf{objective})\), \(d_i=\lVert\delta_i\rVert_2\), and \(\mathbf{1}[\cdot]\) the indicator. With shaping factors \(\alpha_{\text{prev}},\alpha\), final reward \(R_f\), and radius \(r_i\):
\[\mathrm{rew}^{\text{shape}}_i = \alpha_{\text{prev}}\,d^{\text{prev}}_i - \alpha\, d_i\]Final reward:
\[\mathrm{rew}_i = \mathrm{rew}^{\text{shape}}_i + R_f\,\mathbf{1}[\,d_i < \text{goal_threshold}\times r_i\,]\]- Parameters:
env (Environment) – Current environment.
- Returns:
Shape
(N,). The normalized per-agent reward vector.- Return type:
jax.Array
- static done(env: Environment) → Array[source][source]#
Returns a boolean indicating whether the environment has ended. The episode terminates when the maximum number of steps is reached.
- Parameters:
env (Environment) – The current environment.
- Returns:
Boolean array indicating whether the episode has ended.
- Return type:
jax.Array
- property action_space_size: int[source]#
Flattened action size per agent. Actions passed to
step()have shape(A, action_space_size).
- property action_space_shape: Tuple[int][source]#
Original per-agent action shape (useful for reshaping inside the environment).
- property observation_space_size: int[source]#
Flattened observation size per agent.
observation()returns shape(A, observation_space_size).